Bats and Wind Energy: Predicting Risk and Designing Mitigations

Theodore J. Weller

USDA Forest Service
Pacific Southwest Research Station
Arcata, California

Impacts of Wind Energy on Wildlife

Impacts of Wind Energy on Raptors

Altamont Pass

Annual Fatality Estimates

54 – 109 Golden Eagles

213 – 749 Red-tailed Hawks

70 – 1013 Burrowing Owls

519 – 2227 Total Raptors

Smallwood and Thelander 2008; J Wild Manage 72:215-223.

Bat Fatalities at Wind Facilities

Unadjusted Fatality Rates

Johnson 2005; Bat Res News 46:45-49.

Bat Fatalities at Wind Facilities

Unadjusted Fatality Rates

Johnson 2005; Bat Res News 46:45-49.

Problem Areas for Siting?

Photos: E. Arnett

Patterns of Fatalities

Migratory Tree-roosting Species

Timing of Fatalities

Data: Johnson 2005, Bat Res. News 46:45-49 Cryan and Brown 2007, Biol. Cons. 139:1-11

The search image changes......

Photo: E. Baerwald

Greatest Impact: Migratory Species

Potential Explanations

- Attraction to lights on turbines
- Attraction to sounds from turbines
- Not echolocating
- Attraction to linear corridors

- Attraction as potential roosts
- Attraction to insects at turbines
- Bats crash into stationary objects

Bats Avoid Stationary (and slow moving) Objects

Bats Can't Avoid High Speed Collisions

Fatalities at Moving Turbines

Attraction as Potential Roosts?

Photos: J. Szewczak

Attraction to insects at turbines?

Bat Fatalities Increase with Turbine Height

Timing of Fatalities

- Highly variable
- Episodic
- Spatially correlated

Arnett et al. 2008; J. Wild. Man 72:61-78 Kerns et al. 2005; BWEC

Predicting Risk Designing Mitigations

Bird Migration Routes

National Geographic

Nocturnal Spring Migration

May 1, 2008, 22:25 CDT

Avoiding Sites with High Bat Activity

- Thermal IR
- Echolocation Detectors
- Radar
 - NEXRAD
 - Marine
 - Fixed Beam

Thermal IR Imagery

Strengths

Excellent Behavioral Information
Information from Rotor-swept Zone
"Easy" to tell Bats from Birds

Limitations

Limited Field of View
Cost/Technology Change
Snapshot in Time

Echolocation Detectors on Meteorological Towers

Predicting Risk – Avoiding Sites with High Bat Activity

Echolocation Monitoring

- Strengths
 - Bat-specific
 - Temporal replication
 - Spatial replication

- Link to fatalities not established
- Sound Attenuation
- Bat activity not bat #s

Marine Radar

X-Band Radar

- Strengths
 - Highly Mobile
 - Passage Rates (targets/hr)
 - Altitudinal Distributions

Limitations

- Can't distinguish bats from birds
- Terrain and Weather
- Limited Period of Deployment (30-45 days)

Doppler Radar

Next Generation Radar (NEXRAD) Weather Surveillance Radar

Strengths

- Large-scale movement patterns
- Continuous operation

Limitations

- Can't tell bats from birds
- Activity levels above turbine height
- Not transportable
- Many not available to researchers

NPOL: Polarimetric Radar?

Combining Methods for Maximum Resolution

Possible Mitigations

Turbine Design

Acoustic Deterrent

Ultrasound broadcast unit -- developed by Binary Acoustic Technology

Bats Avoid Ultrasound "White Noise"

Mitigations

Ultrasound Fence?

Limitations:

- Sound attenuation (30m)
- No. of units per Facility?

Biotic Sounds?

Change Cut-in Speeds

Incorporate Collision Risk into System Operations

Bat activity and fatalities monitored at 35 wind facilities in Germany

Goal: Predict collision-risk based on meteorological data

DeTect Inc.

Acknowledgements

- Paul Cryan, USGS, Fort Collins Science Center
- Ed Arnett, Bat Conservation International
- Joe Szewczak, Humboldt State University
- Erin Baerwald, University of Calgary
- Robert Brinkmann, Leibniz Universität
- Michael Durham, Durmphoto

